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Abstract—The objective of this paper is to analyse the trade-
off between the cost of operation and system reliability resulting
from different shapes of Operating Reserve Demand Curves
under scarcity pricing. We implement a model of the short-
term operation of Belgium and we validate it against historical
realisations of operation. The model of short-term operation
is implemented using 4 embedded optimization problems. The
model allows us to quantify the trade-off between the lag and cost
of mobilizing flexible resources versus the increased reliability
that these resources ensure for system operation. We compare
eight variants of operating reserve demand curves, and use them
as the basis for supporting a recommendation to the Belgian
regulatory authority for the implementation of scarcity pricing
in Belgium.

Index Terms—Scarcity pricing, operating reserve demand
curve, unit commitment, economic dispatch, balancing, automatic
frequency restoration reserve, manual frequency restoration
reserve.

I. INTRODUCTION

THE increased integration of renewable resources in power
systems has led to a tension in electricity markets. On

the one hand, it has increased the need for flexible assets
by increasing the variability and unpredictability of supply in
the system. On the other hand, it has decreased the remu-
neration of flexible assets by pushing them further down the
merit order curve and by consequently depressing the real-
time energy price. This paradox raises concerns about the
adequate remuneration of flexible resources, where flexible
resources should be understood as resources that can provide
automatic and manual frequency restoration reserves with a
full activation times of five to fifteen minutes1. Scarcity pricing
is a mechanism that has been considered as a possible remedy
to the aforementioned lack of adequate incentives for investing
in flexible assets.

Scarcity pricing is a mechanism for better remunerating
energy and reserve in periods of scarcity. It relies on an
operating reserve demand curve (ORDC) that introduces price
elasticity in the procurement of reserve in the real-time market.
Scarcity pricing mitigates the missing money problem by
uplifting the real-time price for energy during periods of
scarcity. Early references to this mechanism are found in Stoft
in [1] and the theory was formally anchored to the loss of load
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probability (LOLP) and value of loss load (VOLL) by Hogan
in [2] and [3].

Scarcity pricing based on operating reserve demand curves
has commonly been associated with US markets, and the
adaptation to European market design requires the introduction
of EU-specific terminology. The real-time market and reserve
are referred to as the balancing market and balancing capacity
in Europe, respectively. We consider automatic and manual
frequency restoration reserve (aFRR and mFRR respectively)
in this paper. aFRR is driven by an automatic controller and
can react within a few seconds in order to restore frequency
deviations. It can thus be considered as synchronised reserve.
The full activation time of aFRR is typically five minutes.
mFRR is manually activated in order to cope with more sig-
nificant system disturbances, including contingencies. These
resources need to be fully available within 15 minutes and
bear similarities to contingency reserve.

Scarcity pricing has been increasingly considered for imple-
mentation by a number of US ISOs, such as ERCOT and PJM.
In these markets, there has been a transition from an ORDC
with a fixed reserve requirement to a downward sloping ORDC
based on the VOLL and LOLP [4]. ISO-NE and MISO are also
considering this transition, following the recommendation of
their respective market monitors.

TSOs and regulators in Europe have also considered varia-
tions of scarcity pricing mechanisms. A Reserve Scarcity Pric-
ing function based on the VOLL and the amount of leftover
reserve based on hour-ahead measurements is implemented
in Great Britain [5]. Ireland has also implemented a scarcity
pricing mechanism, nevertheless it is not based on ORDC and
LOLP but rather triggered by stress conditions in the system
[6], [7]. Poland is planning to implement a scarcity pricing
scheme by the first half of 2023. The Polish scheme would be
based on an ORDC based on VOLL and LOLP, and would
remunerate non-contracted but available balancing capacity
[8].

In Belgium, a number of studies have been performed on
behalf of the Belgian regulatory authority for energy, in order
to assess the potential of scarcity pricing based on ORDC [9],
[10]. In more recent work, [11] investigates the adaptation of
the mechanism, which has been inspired by US-style two-
settlement systems, to European market design. A central
measure proposed in this work is the implementation of a real-
time market for reserve capacity [12], [13]. The current work
advances this research effort for analyzing the implementation
of the mechanism in EU markets by focusing on the calibration
of the operating reserve demand curves. This is a key design
parameter of the mechanism.
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The calibration of ORDCs has largely been restricted to
open-loop analyses in the existing literature [14], [15]. The
Belgian TSO, ELIA, studies scarcity pricing in Belgium in
[15]. Zarnikau [14] analyses the impact of scaling ORDCs
horizontally, as well as the effect of the ORDC on the real-
time market price and investment incentives for natural-gas-
fired generation in the Texas electricity market.

Reference [14] highlights the influence of the shape of
ORDC on the price and how the calibration of the ORDC
can affect the remuneration of different technologies through
its effect on prices. Nevertheless, the open-loop approach
proposed in the paper is not able to capture the dispatch
and commitment incentives created by different calibrations of
the ORDC. This shortcoming of open-loop analyses motivates
our proposal for a nested modelling approach for simulating
the short-term operation of the system and for modelling the
interplay between reserve prices and operational efficiency.

Our simulator models the operation of a perfectly coordi-
nated system, where a centralized optimization model commits
and dispatches resources in a coordinated fashion. Uncertainty
is assumed to stem from the actual load that needs to be
served by the system. The sequential optimization of system
scheduling aims at replicating the real-time controllability of
the different assets present in the system, with a specific
focus on quantifying the interplay between lags in decision
making and the revelation of uncertain information in the
system. This allows us to quantify the fundamental tradeoff
that ORDCs aim at balancing: incurring non-negligible fixed
costs for committing flexible resources that can allow the
system to operate reliably in real time, versus running the risk
of not covering imbalances fully.

The nested modelling of system operation also appears in
[16] and [17], albeit less detailed. Nested models also appear
in other contexts in [18] and [19]. We proceed to discuss the
relation of these publications to our work.

Zhou and Botterud [16] develop their model in order to
analyze an ORDC which is based on the loss of load proba-
bility, and which accounts for the uncertainty caused by wind
and load forecast errors, as well as generation contingencies.
Lavin et al. [17] introduce an LOLP which is a function of the
ambient temperature, in order to represent the higher proba-
bility of forced generator outages under extreme temperature
conditions. Those models use short-term system operation
simulators in order to compare different ORDC schemes.
Nevertheless, these publications mostly leave aside the aspect
of calibrating the ORDC. More specifically, the results of Zhou
and Botterud [16] and Lavin et al. [17] are limited by the
hourly temporal granularity of their model, as they cannot
quantify the tradeoff between short-term dispatch adjustments
and the lagged activation of reserves. The increased precision
of our model remedies this shortcoming, and advances the state
of the art by assessing more faithfully the interplay between
costs and lags versus reliability of operation for different
calibrations of ORDC.

In this sense, the precision of our model is closer to the
Smart-ISO model of Simao and Powell [18]. The model of
[18] is inspired by ISO practices and it is used in order to
asses the reliability of the PJM system under different levels of

wind power integration. We can also draw similarities with the
model of Bakirtzis and al. in [19] where the authors propose a
number of short-term operating models in order to cope with
the increased uncertainties of power system operations. Note,
however, that neither of the aforementioned papers is focused
on the question of the calibration of ORDCs.

The main contributions of this paper are thus twofold. We
introduce of a quantitatively sound methodology for calibrat-
ing ORDCs which anchors the calibration of an ORDC to
a closed-loop simulation model and examines three specific
design criteria for ORDCs that emerge in a realistic implemen-
tation of the mechanism. Moreover, we implement detailed
system operation models for quantifying the tradeoff between
incurring fixed costs for committing flexible resources and
allowing the system to operate reliably versus running the risk
of shedding load.

In addition to the methodological novelty of our analysis,
there is an important institutional dimension to our work.
The current modeling effort is contributing directly to the
implementation of a scarcity pricing mechanism in the Bel-
gian electricity market. The results of the analysis constitute
the basis for our recommendation to the Belgian regulatory
authority for the possible implementation of scarcity pricing
in Belgium in the short to medium term.

The paper is structured as follows. Section II summarizes
the principles of scarcity pricing, with a specific focus on
certain dilemmas pertaining to the calibration of ORDCs.
Section III presents the short-term operating model that we
have developed in order to support the calibration of an ORDC.
Our case study of the Belgian market is presented in section
IV. The results of the case study are presented and analysed
in section V. Finally, we conclude and discuss future research
perspectives in section VI.

II. SCARCITY PRICING AND ORDC

The argument that rationalizes the implementation of
scarcity pricing with ORDCs based on LOLP and VOLL relies
on the intrinsic stochasticity of an economic dispatch and in
its deterministic approximation [3]. In this setting, the value of
an additional MW of balancing capacity is linked to the value
of the improved reliability that it provides to the system by
reducing the likelihood of load shedding. This marginal value
is characterised by Hogan in [3] as a function of the value
of lost load (V OLL), the loss of load probability (LOLP (·))
given the level of reserve in the system (r) and the marginal
cost of the marginal unit in the system (M̂C):

V R(r) = (V OLL− M̂C) · LOLP (r) (1)

The most complete integration of scarcity pricing based on
ORDC to electricity market operations would correspond to
the co-optimization of reserve and energy in real time. An
ORDC based on (1) would then be the explicit demand curve
for reserve and would be inserted in the multi-product auction
that trades energy and reserve simultaneously. Co-optimized
markets would then produce one price for each product: (i) a
reserve price for the available reserve and (ii) an energy price
for the energy traded. Note that, in the absence of binding
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ramp constraints, the price of energy will be coupled to the
price of reserve in order to ensure an equivalence between
the marginal profit on the energy and reserve market for a
marginal generator that supplies both reserve and energy.

In the absence of a co-optimization of energy and reserves,
we could use the expression of Eq. (1) to compute adders
based on the amount of reserve that is available in real time,
as measured by system telemetry. This adder reflects the level
of stress in the system, and would correspond to the price
of reserve. The coupling between reserve and energy prices
would then be implemented by adding this adder as a price
component to the real-time energy price in the absence of co-
optimization (the balancing energy price in EU nomenclature).

A. Multiple Reserve Products

Formula (1) has been generalized by Hogan in [20] to the
case of multiple reserve products of different quality. The
quality of reserve refers to the delivery time that is required for
this specific reserve product to be fully available, which in EU
jargon is referred to as full activation time. This generalization
is based on the split of a real-time dispatch interval two parts.
In the first part of the interval, it is assumed that only high-
quality resources can respond, whereas in the second part
of the interval, all reserve types are assumed to be able to
respond. We consider the full interval as an imbalance interval.

In the EU, the reference duration for an imbalance interval
is 15 minutes and [21] suggests the following split of the real-
time dispatch based on the products that have been historically
available in the EU balancing market. The first part of the
interval would last 7.5 minutes and imbalances would be
resolved by balancing capacity that can be fully activated in
no longer than 7.5 minutes (which corresponds in our analysis
to aFRR capacity2). The second part of the interval would also
last for 7.5 minutes. In this time interval, imbalances would
be resolved by balancing capacity that can be fully activated
in 15 minutes (which correspond in our analysis to mFRR
capacity).

Based on this split of an imbalance interval, the authors in
[21] suggest the introduction of two ORDCs: (i) a 7.5-minute
ORDC (eq. (2)) for the first part of the interval and (ii) the
15-minute ORDC (eq. (3)) for the second part of the interval:

V R
7.5(r7.5) =

1

2
· (V OLL− M̂C) · LOLP7.5(r7.5) (2)

V R
15(r15) =

1

2
· (V OLL− M̂C) · LOLP15(r15) (3)

Here, LOLPx(·) corresponds to the loss of load probability
after x minutes, and rx is the amount of reserve that can
be activated within x minutes. The loss of load probability
after x minutes is described in equation (4) and represents the
probability of the imbalance after x minutes exceeding the
balancing capacity that can be made available in x minutes:

LOLPx(rx) = P(imbx ≥ rx) with imbx ∼ N (µx, σ
2
x). (4)

2Note that, even though the full activation time of aFRR that is envisioned
in the pan-European platform PICASSO for the activation of aFRR capacity
is 5 minutes, the current analysis is performed for the Belgian system whose
aFRR has been required to be fully activated in 7.5 minutes in the past [22].

The imbalance is assumed to be drawn from a normal distri-
bution with mean µx and standard deviation σx. These param-
eters can be estimated from the historical system imbalance.
They are computed per 4-hour block and per season, in order
to account for seasonality.

The settlement in a co-optimized market can be understood
by analysing the following model in a convex setting. As-
suming a benefit function for demand (B(·)) and a constant
production cost for generator g ∈ G (Cg), where G is the set of
generators in the system, our goal is to maximize the welfare
of the system as a function of the demand (d), reserve available
after 7.5 and 15 minutes (r7.5 and r15)3 and the production
(pg) and supply of fast and slow reserve (rFg and rSg ) for every
generator g:

max
d,p,rS ,

rF ,r7.5,r15

B(d)−
∑
g

Cg ·pg+
∫ r7.5

0

V R
7.5(x)dx+

∫ r15

0

V R
15(x)dx, (5)

The co-optimization must obey the market clearing constraint
for energy and fast and slow reserve (the associated dual
variables are provided in brackets):

(λ) : d =
∑
g

pg, (6)

(λ7.5) : r7.5 ≤
∑
g

rFg , (7)

(λ15) : r15 ≤
∑
g

(rFg + rSg ), (8)

The operating constraints of generator g are characterised by
the set Xg:

(pg, r
S
g , r

F
g ) ∈ Xg. (9)

It is worth noting that the fast reserve supplied by the genera-
tors is eligible not only for the pool of reserve available after
7.5 minutes (Eq. (7)) but also for the pool of reserve available
after 15 minutes (Eq. (8)).

The profit maximization problem faced by a generator g can
be obtained by first relaxing the market clearing constraints of
the co-optimization model (Eqs. (6)-(8)):

max
d,p,rS ,

rF ,r7.5,r15

B(d)−
∑
g

Cg · pg +
∫ r7.5

0

V R
7.5(x)dx+

∫ r15

0

V R
15(x)dx

+ λ · (
∑
g

pg − d) + λ7.5 · (
∑
g

rFg − r7.5)

+ λ15 · (
∑
g

rFg +
∑
g

rSg − r15) (10)

(s.t.) (pg, r
S
g , r

F
g ) ∈ Xg, ∀g ∈ G, (11)

and then decomposing the relaxed problem by g ∈ G:

max
pg,rSg ,rFg

pg · (λ− Cg) + rFg · (λ15 + λ7.5) + rSg · λ15 (12)

(s.t) (pg, r
S
g , r

F
g ) ∈ Xg. (13)

3The value of r15 would be computed in practice ex post, based on
telemetry measurements. In case the resolution of telemetry data is 15
minutes, it would be necessary to assume a pre-defined availability of different
resources for 7.5 minutes, which is the case in our present study.
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From the generator point of view, λ, λ7.5 and λ15 are exoge-
nous parameters representing respectively the price of energy
and of reserve for the first and second interval of an imbalance
period. From the system operator point of view, these prices
are can be obtained by solving the initial co-optimization
problem.

The prices of reserve for the first and second interval, λ7.5

and λ15, are set by the ORDCs. This is demonstrated by the
KKT conditions of the initial co-optimization problem relative
to the complementarity constraints implicating variables r7.5
and r15 in (14) and (15):

0 ≤ r7.5 ⊥ λ7.5 − V R
7.5(r7.5) ≥ 0 (14)

0 ≤ r15 ⊥ λ15 − V R
15(r15) ≥ 0 (15)

Generators are then remunerated according to (12) under
co-optimization.
• Balancing capacity that can be made available in 7.5

minutes is remunerated with the fast reserve price:

λF = V R
7.5(r7.5) + V R

15(r15). (16)

• Balancing capacity that can be made available in 15
minutes is remunerated with the slow reserve price:

λS = V R
15(r15). (17)

• Energy is remunerated in real time, with the energy price,
λ.

A notable challenge of integrating scarcity pricing in the
EU and certain past US markets is the lack of co-optimization
in the European market. Without co-optimization, a system
operator cannot rely anymore on the dual variables of the co-
optimization problem in order to characterize the prices and
needs to resort to approximations. In the past, ERCOT has
used adders as proxies to couple the reserve and energy prices,
although the evolution of the ERCOT design is towards a co-
optimization model [23].

In the spirit of the original ERCOT design, [21] suggests
to introduce 3 adders in order to approximate pricing under
co-optimization. The fast adder and slow adder would be
equal to the fast and slow reserve price and would remunerate
balancing capacity that can be made available in 7.5 and
15 minutes. The energy adder would be equal to the fast
adder and would be added to the real-time balancing price
for remunerating energy.

Assuming that the energy adder is equal to the fast adder is
an approximation that presumes non-binding ramp constraints.
The reader is referred to the supplement of [11] for a more
detailed discussion about this approximation. The explanation
can be summarized as follows. The price of energy is fixed
by the KKT conditions of the initial co-optimization problem
relative to the generation variables pg, rFg and rSg . Depending
on the which constraints of the model are binding, the energy
price may be offset by a constant with respect to the fast adder,
the slow adder, or neither.

B. Variants of ORDC

Eqs. (2) and (3) depend on a number of design parameters.
Different variants of ORDCs can be produced depending on

these assumptions. In this paper, we consider the following
design parameters, which have been discussed in the context of
the implementation of scarcity pricing in Belgium: (i) different
values for VOLL, (ii) whether the argument of the LOLP
operator is the reserve capacity remaining before or after the
activation of reserve and (iii) whether imbalance increments
within an imbalance interval are assumed to be correlated or
not.

1) VOLL at 8300 e/MWh versus 13500 e/MWh: The
Belgian federal planning bureau has estimated the Belgian
VOLL at 8300 e/MWh in [24]. This value has been used
as the reference value of the VOLL in [21]. The value of
13500 e/MWh has also been suggested because it represents
the current bidding limit of the imbalance price [25] and as
such the market players’ assumed highest VOLL.

2) Pre- versus Post-Activation: Reference [11] points out
that the pre- and post-activation variants correspond to dif-
ferent interpretations of what making a certain quantity of
reserve available in real time would mean in terms of system
operator expectations. The pre-activation interpretation means
that 1 MW of reserve implies that a resource has been
afforded time to recover from its balancing dispatch during the
previous imbalance interval. The post-activation interpretation
means that the resource is prepared to offer 1 MW even
if it has not been afforded time to return to its originally
scheduled setpoint. The effect of the assumption is found
to be significant in the context of the stochastic equilibrium
formulation presented in [11]. As the time step of the real-
time / balancing market becomes shorter (5 minutes currently
in the US, and 15 minutes in Europe), the distinction becomes
less relevant.

If the post-activation reserve capacity margin is denoted as
r, then the pre-activation margin is r − imb, with imb being
the difference between the scheduled and actual demand. This
allows us to value balancing capacity at the beginning of an
interval before absorbing the imbalance.

3) Independent versus Correlated Imbalance Increments:
When splitting an imbalance periods into two intervals, the full
imbalance that needs to be covered also has to be split into two
imbalance increments. Each interval is then responsible for
causing one of the two imbalance increments. The assumption
then is on how imbalance increments correlate in these two
separate time steps. On the one extreme, we can assume
correlated increments which implies that the total imbalance
over both stages evolves linearly from the beginning to the
end of the interval. On the other extreme, the assumption
of independent imbalances implies that the total imbalance
over both stages is the sum of two independently distributed
imbalance increments occurring at stages 1 and 2 respectively.

The distinction affects the implied standard deviation of the
imbalance that is used in the 7.5-minute version of Eq. (4).
Given σ and µ, the standard deviation and mean of the 15-
minute imbalance, the standard deviation of the 7.5-minute
increments is either σ/

√
2 if the increments are independent,

or σ/2 if the increments are perfectly correlated. The mean of
both the independent and correlated 7.5-minute increments is
µ/2.
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III. SIMULATOR FOR SHORT-TERM OPERATION

The short-term operating model that we develop for the
purpose of our analysis is composed of 4 embedded optimiza-
tion problems that are solved in sequence throughout the day.
Simulations begin in the day ahead by scheduling inelastic
production, and unfold in intraday and real time by solving a
sequence of unit commitment and economic dispatch problems
with different scheduling windows. Each problem is employed
for the commitment and / or dispatch of specific types of
plants, depending on their response speed.

Particular care is given to (i) the operational constraints of
the individually modelled generation plants, (ii) the revelation
of real-time uncertainty and the scheduling of the system based
on forecast information, and (iii) the effect of each decision-
making stage on subsequent optimization problems.

Depending on the characteristics of an asset, its commitment
plan and dispatch decisions will be obtained by different
optimization problems. Assets can be partitioned into 3 broad
categories, based on their real-time controllability.

1) DA scheduled generators cannot modify their planned
day-ahead dispatch. This might be due to the inflexibility
of the technology, or a link between electricity production
and other processes, such as heating. The electricity
production of these generators is typically determined in
forward processes, and these units are not participating
in a balancing market.

2) Fast balancing capacity generators require a non-
negligible lag to start up (between 1 and 3 hours) but
are very reactive once committed. CCGT generators
constitute the bulk of this category.

3) Slow balancing capacity generators include all emer-
gency generators and demand response resources. These
generators are typically costly to start up, but can be
activated in a very short time, in order to free up some
of the fast balancing capacity4.

The 4 dispatch and commitment models that we develop
optimize different subsets of the aforementioned assets. The
dependencies are described hereunder. The sequencing of the
models in the simulator is indicated in Fig. 1.
• The day-ahead unit commitment (DA-UC) model is

used for scheduling the inelastic production that will
not vary in real time relative to its day-ahead set-point.
The model is launched once, before the beginning of
the day, with a scheduling horizon of 72 hours. The
model assumes a fixed initial dispatch of units for the
day, which will be identical for every variant of ORDC
that is tested in our analysis. The parameters of the
simulation include the day-ahead load forecast, as well
as settings that determine the reactivity and availability
of the generation pool. This problem also determines the
hydro storage target for the real-time models. The system
is allowed to deviate from this target in order to address
balancing issues, but such deviations are penalized.

• The intermediate rolling-window unit commitment
(Inter-RUC) is solved every six hours over a 24-hour

4Fast and slow balancing capacity resemble spinning and non-spinning
reserve, respectively, in US terminology.

scheduling window. The Inter-RUC determines the com-
mitment of CCGT plants for the next 6 hours until the
next Inter-RUC is launched. This process thus proxies
intraday market adjustments. It is costly to keep CCGT
plants online, therefore an optimal scheduling of these
plants requires a significant scheduling window.

• The pre-real-time rolling-window unit commitment
(PRT-RUC) determines the commitment of emergency
generators. The model is launched every 15 minutes over
a 1-hour scheduling window.

• The real-time economic dispatch (RT-ED) dispatches
the generators that are committed in the previous opti-
mization problems.

A. Generic Unit Commitment Problem

All the optimization problems are based on a standard unit
commitment problem that aims at minimizing the total cost of
the system under a series of constraints for both classical and
pumped hydro generation.

1) Sets, Variables and Parameters: We define T =
{t1, t2, . . . tT } as the scheduling window for a problem, D
as the demand, G = {1, 2, . . . N} as the set of generators
and S = {7.5, 15} as the type of ORDC considered in
this analysis. Let us also denote V R

it as the marginal benefit
function of reserve type i at period t. The segments of the
ORDC are obtained by approximating (2) and (3) with a
stepwise constant function5.

The set of decisions concerning a generator
g at period t is characterized by the point
xg,t = (pg,t, r

F
g,t, r

S
g,t, r

NS,F
g,t , rNS,S

g,t , ug,t, vg,t, wg,t, sg,t).
This vector is the concatenation of the production, fast
reserve, slow reserve, fast non-spinning reserve, slow non-
spinning reserve and binary variables for the commitment,
activation, shut-down and start-up of generator g at time t.
The vector xg,t belongs to the set X = R5

+ × B4.
Each generator g is characterized by its technical parameters

P+
g , P

−
g , Rg, R

NS,F
g , RNS,S

g , UTg, DTg and SUg which are
respectively the maximum and minimum production limit, the
ramp rate, the limit for fast and slow non-spinning reserve, the
minimum up time and down time, the start-up time of the unit,
and its cost function Cg : X → R. The cost function includes
the fixed cost of keeping a generator online, the start-up cost
of starting it up, and the fuel cost with variable heat-rate.

We represent demand for energy and reserve using the
vector mt = (zt, r

7.5
t , r15t ). This tuple consists of the shortage

in energy and the system supply for reserve for both the
first and second half of an imbalance interval interval for
period t. The hydro vector ht = (pHt , d

H
t , e

H
t , r

H,F
t , rH,S

t , uHt )
represents the production, consumption, energy stored, fast
and slow reserve supplied by pumped hydro, and the pumping
mode of a pumped hydro unit for period t. Note that mt ∈ R3

+

and ht ∈ R5
+ × B1.

We further introduce the notation t− to characterize the
period preceding period t.

5A method to approximate (1) by a stepwise constant function is proposed
in [16].
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Fig. 1. Sequence of models in our simulator of short-term operation.

2) Objective Function: The system operator aims at mini-
mizing the sum of the production cost and shortage cost minus
the benefit from reserve:

min
xg,t,
mt,ht

∑
t∈T

(∑
g∈G

Cg(xg,t) + V OLL · zt −
∑
i∈S

∫ rit

0

V R
it (x)dx

)
.

(18)
The cost of shedding load is valued at the VOLL.
3) Market Clearing Constraints:

Dt =
∑
g∈G

pg,t + pHt − dHt + zt ∀t ∈ T (19)

r7.5t ≤
∑
g∈GD

rFg,t + rNS,F
g,t + rH,F

t ∀t ∈ T (20)

r15t ≤
∑
g∈GD

rSg,t + rNS,S
g,t + rH,S

t + r7.5t ∀t ∈ T (21)

Constraint (19) ensures that the market is balanced at
all times, and constraints (20) and (21) define the market
clearing conditions for fast and slow reserve. Reserve can
be sourced from online generators (spinning reserve), from
offline generators (non-spinning reserve) or from hydro (hydro
reserve).

4) Generation Constraints:

rFg,t ≤ Rg · 7.5 ∀g ∈ G,∀t ∈ T (22)

rSg,t ≤ Rg · 15 ∀g ∈ G,∀t ∈ T (23)

pg,t + rFg,t + rSg,t ≤ P+
g · ug,t ∀g ∈ G,∀t ∈ T (24)

pg,t ≥ P−g · ug,t ∀g ∈ G,∀t ∈ T (25)

Eqs. (22) to (25) represent the ramp constraints of fast
and slow reserve and the maximum and minimum technical
production limits of a unit.

5) Non-Spinning Reserve Constraints:

rNS,F
g,t ≤ RNS,F

g · (1− ug,t) ∀g ∈ G,∀t ∈ T (26)

rNS,F
g,t + rNS,S

g,t ≤ RNS,S
g · (1− ug,t) ∀g ∈ G,∀t ∈ T (27)

Eqs. (26) and (27) limit the supply of non-spinning reserve
from offline generators. Most of the generators cannot provide
non-spinning reserve and their parameters RNS,F

g and RNS,S
g

are equal to 0.
6) Transition Constraints:

pg,t − pg,t− ≤ Rg · T · (1− vg,t) + P−g · vg,t ∀g ∈ G,∀t ∈ T
(28)

vg,t + ug,t− − ug,t − wg,t = 0 ∀g ∈ G,∀t ∈ T
(29)

The transition constraints (28) and (29) represent the ramp
constraint for production and the commitment transition con-
straint. The production ramp constraint has two possible
modes: one for normal operation and one for activation. The
parameter T is the number of minutes of one period in a
specific problem. For example, T = 60 for the DA-UC
problem.

7) Operating Constraints:

wg,t +

t∑
t′=max(t0,t−UTg+1)

vg,t′ ≤ 1 ∀g ∈ G,∀t ∈ T (30)

vg,t +

t∑
t′=max(t0,t−DTg+1)

wg,t′ ≤ 1 ∀g ∈ G,∀t ∈ T (31)

SUg · vg,t −
t−1∑

t′=max(t0,t−SUg+1)

sg,t′ ≤ 0 ∀g ∈ G,∀t ∈ T (32)

The operating constraints (30), (31) and (32) represent the
minimum down time, minimum up time and start-up time of
assets. Similarly as for T , UT , DT and SU are adapted to
the granularity of the problem under consideration.

8) Hydro Generation Constraints:

dHt ≤ DMax
H · uHt ∀t ∈ T (33)

eHt ≤ EMax
H ∀t ∈ T (34)

pHt + rH,F
t + rH,S

t ≤ PMax
H · (1− uHt ) ∀t ∈ T (35)

pHt + rH,F
t + rH,S

t ≤ eHt ∀t ∈ T (36)

eHt = eHt− −
60

T
(pHt− + dHt− · η) ∀t ∈ T (37)

The pumped hydro generation constraints restrict the maxi-
mum hydro consumption, energy stored and hydro production
in constraints (33) - (35) with the pump hydro characteristics
DMax

H , EMax
H and PMax

H . Note that a unit is either pumping
or producing, as a function of the pumping mode uHt . Eq. (36)
restricts the hydro reserve to the total stored energy. Constraint
(37) describes the evolution of energy stored in the reservoir as
a function of pumping and production decisions in the previous
period, as well as the efficiency of the plant.

B. Modifications for the Intraday and Real-Time Problems

The intraday problem (Inter-RUC) and real-time problems
(PRT-RUC and RT-ED) extend the standard unit commitment
problem described previously to account for the day-ahead
schedule and the particularities of the balancing market.
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1) Day-ahead Constraints:

rFg,t = 0 ∀g ∈ GI ,∀t ∈ T (38)

rSg,t = 0 ∀g ∈ GI ,∀t ∈ T (39)

pg,t = pDA,∗
g,t ∀g ∈ GI ,∀t ∈ T (40)

Given the set GI representing the DA-scheduled generators,
constraints (38) and (39) restrict their ability to supply reserve.
Constraint (40) characterizes their real-time inflexibility by
equalizing the real-time production to the scheduled day-ahead
production pDA,∗

g,t .
2) Status Constraints: The commitment decisions of previ-

ous optimization models are enforced by this set of constraints.
We introduce the notation SU,t, SS,t, SA,t and SF,t to repre-
sent the set of generators that are unavailable, in the start-up
process, activated or free in period t6.

ug,t = 0 ∀t ∈ T ,∀g ∈ SU,t ∪ SS,t (41)
ug,t = 1 ∀t ∈ T ,∀g ∈ SA,t (42)
sg,t = 1 ∀t ∈ T ,∀g ∈ SS,t (43)

Constraints (41) and (42) imply that a generator is either off
(ug,t = 0) or on (ug,t = 1) because of the minimum down time
and minimum up time constraints of previous optimization
problems. Similarly, Eq. (43) enforces the start-up variables
dictated by a start-up decision in a previous problem and its
start-up time.

3) Hydro-Deviation Constraints: The opportunity cost of
hydro in real time is modelled by a hydro storage target eDA,∗

t

and the variable qt representing the deviation from that target:

qt ≥ eDA,∗
t − eHt ∀t ∈ T (44)

qt ≥ eHt − e
DA,∗
t ∀t ∈ T (45)

qt ≥ 0 ∀t ∈ T (46)

The term
∑

t∈T
∫ qt
0
HD(q)dq is subtracted from the ob-

jective function of the real-time problem in order to penalize
deviations.

4) Start-Up Constraints: The scheduling window
for the pre-real-time problem is defined as
T = {t0,0, t0,1, t1, . . . , tw−1}. It represents two 7.5-
minute periods (t0,0 and t0,1) and w − 1 15-minute periods.
This window plans over w · · · 15 minutes. The first period is
split, in order to account for the start-up profile of emergency
generators and how much of their generation is available
after 7.5 minutes. Given the initial position of a generator p0g ,
the initial transition constraint of equation (28) needs to be
reformulated:

pg,t0,0 − p0g≤ Rg · 7.5 · (1− vg,t) +RSU,0
g · vg,t

∀g ∈ G,∀t ∈ T
(47)

pg,t0,1 − pg,0,1≤ Rg · 7.5 · (1− vg,t) +RSU,1
g · vg,t

∀g ∈ G,∀t ∈ T
(48)

ug,t0,0 = ug,t0,1 ∀g ∈ G,∀t ∈ T (49)
vg,t0,0 = vg,t0,1 ∀g ∈ G,∀t ∈ T (50)

6No generator can be in two sets at the same time and all generators must
be in a set at every period t.

The start-up constraints (47) and (48) ensure that generators
comply with their start-up profile. This start-up profile is
characterized by the maximum production 7.5 minutes and
15 minutes after activation (RSU,0

g and RSU,1
g ). The start-up

ramp profile is similar to the limit on non-spinning reserve for
emergency generators and demand response.

Note that the two 7.5-minute dispatch periods only account
for one 15-minute commitment period (Eqs. (49)-(50)).

5) Economic Dispatch Constraints: The real-time eco-
nomic dispatch is similar to the first and second period of the
pre-real-time unit commitment except that all the generators
are either activated, unavailable or in start-up. No commitment
decision is taken in this problem.

IV. MODEL VALIDATION AGAINST HISTORICAL DATA

A. Case Study

The investigation is performed on the Belgian power system
with the historical load of 2018.

1) Generation pool: The generation pool modelled in the
simulator includes all the controllable assets of Belgium and
is mainly based on the database of installed capacity by unit,
which is publicly available on the Elia website [26].

In addition to classical thermal generators, this pool includes
demand response, pumped-hydro and some foreign balancing
capacity7. Demand response varies from month to month and
is extracted from historical data. Foreign balancing capacity is
set administratively to 50 MW.

The technical parameters relative to the operating con-
straints of the flexible generators are largely aligned with [27],
except for the minimum production of emergency generators.
We consider emergency generators and demand response as
“all-or-nothing” generators.

2) Net Load: Net load is modelled as the power that must
be served by flexible and controllable assets. It corresponds
to the difference between grid load and renewable energy and
imports / exports.

The data that we use for net load is obtained from ELIA
[28] and the ENTSO-E transparency platform [29]. The data
resolution of the ELIA website and ENTSO-E platform is
respectively 15-minute and hourly.

3) Imbalance: The mean and standard deviation of the
distribution of the imbalances used for the LOLP in (4) is
obtained from the historical system imbalance recorded in
[28]. For simulating 2018, we use the historical imbalance of
the 3 preceding years. The full characterization of the mean
and standard deviation of the system imbalance can be found
in the electronic supplement.

B. Validation

We validate our model by assessing the quality of the
forward position computed by the day-ahead unit commitment
compared to the historical records of day-ahead positions.
The validation is restricted to the day-ahead unit commitment
because the co-optimization of reserve and energy in real time

7Demand response and foreign balancing capacity are referred to as Non-
CIPU generation and Inter-TSO in the Belgian framework.

https://jacartuyvels.github.io/files/calibration-report.pdf
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TABLE I
MEAN ERROR (ME), MEAN ABSOLUTE ERROR (MAE) AND ROOT MEAN
SQUARED ERROR (RSME) BETWEEN THE HISTORICAL AND SIMULATED
PRODUCTION PER TYPE OF FUEL FOR 2018 AND COMPARISON WITH THE

ERRORS OF THE STUDY IN [9] FOR 2013.

Gas Hydro Fuel Nucl. Other

ME Simulator -76.7 28.5 0.0 2.7 140.4

1st Study 168.9 4.7

MAE Simulator 208.8 69.2 0.0 36.8 148.7

1st Study 240.7 61.6

RMSE Simulator 267.7 113.7 1.0 116.2 176.9

1st Study 309.9 119.3

in our simulator is a closed-loop investigation that is expected
to produce a different dispatch depending on the ORDC that
we analyse.

The comparison is performed over the aggregated forecast
production per type of fuel. There are five types of fuel,
namely (i) nuclear, (ii) gas, (iii) hydro, (iv) liquid fuel and
(v) other. We will mostly focus on gas and hydro production.
Nuclear and other technologies are mainly driven by the
maximum available output and liquid fuel is used as an
emergency measure and is rarely scheduled in the day ahead.

The performance of the simulator is compared to that
of [9]. The current work improves [9] by (i) refining and
extending the generation pool, (ii) reducing the granularity of
the dispatch, and (iii) proposing a more realistic modeling of
the dispatch and commitment decisions. These enhancements
allow us to analyse the tradeoff between the commitment
of fast balancing capacity and the cost of operating the
system with more realism. Table I details this comparison and
demonstrates that the increased modeling detail does not come
at the cost of accuracy in replicating past observations of the
Belgian electricity system.

V. RESULTS AND ANALYSIS

The results presented in this section are obtained by simulat-
ing the historical demand of Belgium for 2018. The analysis is
based on a reference scenario and on a sensitivity analysis on
the availability of the slow balancing capacity for contributing
towards satisfying the demand of the 7.5-minute ORDC.

Some of the slow balancing capacity is assumed to partly
cover the demand of the 7.5 minute ORDC and [15] uncovers
the importance of this assumption. We investigate further in
this direction with the sensitivity analysis that is performed
in section V-C. Note that the reference scenario assumes an
availability of 28%.

Our analysis focuses on comparing the total operating cost
of the different variants of ORDCs, and on analyzing the
impact of these variants on the level of the scarcity adder.
The comparison focuses largely on the level of conservatism
of the variants. More conservative variants (value of lost load
at 13500 e/MWh and / or independent 7.5-minute imbalance
increments) are compared against less conservative variants
(value of lost load at 8300 e/MWh and / or correlated 7.5-
minute imbalance increments).

TABLE II
DECOMPOSITION OF THE MEAN TOTAL OPERATING COST OF EACH

VARIANT IN MILLION e PER DAY.

Total
cost

Fuel
cost

Fixed
cost

Act.
cost

Short.
cost

Em.
cost

8300

Pre-
Acti.

Ind. 1.694 1.317 0.344 0.032 0.001 0.109

Corr. 1.697 1.321 0.342 0.033 0.000 0.114

Post-
Act.

Ind. 1.691 1.316 0.343 0.032 0.000 0.107

Corr. 1.694 1.318 0.343 0.033 0.000 0.110

13500

Pre-
Act.

Ind. 1.688 1.304 0.352 0.031 0.000 0.101

Corr. 1.687 1.302 0.350 0.033 0.002 0.097

Post-
Act.

Ind. 1.684 1.301 0.352 0.031 0.000 0.097

Corr. 1.683 1.299 0.350 0.033 0.000 0.095

A. Cost Analysis of the Reference Scenario

The total cost of the variants is reported in Table II. The
values reported here are obtained by adding the fuel cost, fixed
cost, activation cost and shortage cost of the system, and do
not include the cost of the price-inelastic generators, since the
latter is identical across different scenarios. The last columns
report the cost of emergency measures. The total cost varies
from 1.697 M e per day to 1.683 M e per day. Thus, we find
a difference of up to 14 k e per day between the different
variants. This corresponds to a variation of up to 0.8% of the
mean total flexible cost, which can be considered quite stable.

Despite the stability of the total cost, we can analyse the
differences between the variants in order to better understand
the impact of the ORDC on the commitment and dispatch
decisions. Based on Table II, we can observe that more
conservative variants are typically less costly. This trend is
more accentuated for the variation of the VOLL, where the
13500 variants are consistently lower in cost than their 8300
counterpart. More conservative ORDCs tend to result in higher
fixed costs, and this is balanced out by their lower fuel cost.

B. Price Analysis of the Reference Scenario

The values of the adders that result from the different
variants under the reference scenario are presented in Table
III. The fast adder varies from 2.7 e/MWh to 6.5 e/MWh
and the slow adder from 0.15 e/MWh to 0.5 e per MWh.
The adders generated by the different variants are thus more
significantly dependent on the choice of ORDC than system
cost. Two main observations can be highlighted from the table.

Firstly, conservative ORDCs (13500 variants and Indepen-
dent variants) produce higher adders than their counterparts.
Note that the most significant difference is caused by the
distribution of the 7.5-minute imbalance increments, with the
independent variants producing fast reserve adders that are
approximately twice the value of their counterparts.

Secondly, correlated variants result in a higher slow reserve
adder. This is driven by the fact that CCGTs have lower
incentives for commitment, which decreases the committed
balancing capacity and increases the value of the slow adder.

This last point highlights a fundamental difference between
the variations in terms of distribution of imbalance increments
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TABLE III
MEAN LEVEL OF THE ADDERS FOR THE REFERENCE SCENARIO IN

e/MWH.

Fast reserve adder Slow reserve adder

8300

Pre-
Acti.

Ind. 5.78 0.25

Corr. 2.86 0.36

Post-
Act.

Ind. 5.78 0.14

Corr. 2.74 0.30

13500

Pre-
Act.

Ind. 6.50 0.37

Corr. 3.28 0.56

Post-
Act.

Ind. 6.20 0.21

Corr. 2.92 0.32

versus the variations of the VOLL. The independent and
correlated variants only impact the 7.5-minute ORDC and
increase or decrease the incentives for committing CCGTs,
while keeping the slow reserve demand constant. In compar-
ison, variations of the VOLL impact both the 7.5-minute and
15-minute ORDCs.

Fig. 2 provides an indication about the persistence of the
price signal generated by the ORDC in terms of profitability
for owners of flexible assets. The figure compares the price
signal obtained by 4 variants, beginning with the most conser-
vative variant that produces the highest adder (13500/Post-
activation/Independent) and modifying each of the design
parameters in turn. The y-axis displays the measure of the
adder under the metric of conditional value at risk as a function
of the risk aversion of the agents on the x-axis. Depending on
the risk aversion α of an agent, the agent will only consider
the 100− α worst adders for computing its expected payoffs
from the adder. The risk aversion can range from 0% to 100%,
where 0% is a completely risk-neutral agent and 100% is a
completely risk-averse one.

We observe a notable drop in the value of the payoff curve
for low values of the x axis, which corresponds to the impact of
a very high adder resulting from very stressed conditions in the
system. These highly stressed conditions constitute less than
1% of the total possible outcomes in the system. It is possible
to assess the quality of the signal produced by a variant by
analysing the persistence of the adder when the risk aversion
increases.

In Fig. 2 we observe that the correlated variant is the
least persistent by a wide margin. The variants related to the
value of lost load and the pre/post-activation capacity produce
similar levels of persistence. Note that, for these variants,
the decrease can be considered constant until a risk aversion
level of 7.5%, which indicates a mean adder that is generated
by the repetition of a large number of occurrences of small
adders in the market, which is desirable from the perspective
of mitigating investment risk.

Fig. 3 presents the mean fast adder per day for 2018. It
shows that the mean price per day is between 0 and 10 e/MWh
for the majority of the time, while during approximately 50
days the average adder is higher than 10 e/MWh.

Fig. 2. Adder payoff as a function of the risk aversion of the agents.

C. Sensitivity Analysis for the Variation of the Availability of
Slow Balancing Capacity for the 7.5-Minute ORDC

The eligibility of slow balancing capacity for the 7.5-minute
ORDC is an important determinant for the remuneration of
flexible assets. In principle, the eligibility of these resources
should be plant-dependent and should reflect as accurately as
possible their reactivity. For reasons of simplicity, the current
Belgian scarcity pricing proposal only assumes a generic value
for the availability. ELIA [15] assumes an availability of 50%,
and our analysis considers availabilities ranging from 0% to
28%.

Given an availability ρ, the parameters RSU,0
g in Eq. (47)

and RNS,F
g in Eq. (26) for the emergency generators and

demand response are modified as follows:

RSU,0
g = RNS,F

g = ρ ·RNS,S
g . (51)

The effects of modifying the availability on the adder are
two-fold, and can be observed in Table IV. Increasing ρ (i)
reduces notably the level of the fast adder by increasing the fast
balancing capacity pool, and (ii) increases marginally the level
of the slow reserve adder. Increasing the availability of mFRR
for covering the demand of the 7.5-minute ORDC reduces
the need for aFRR from CCGTs, and has a direct effect on
their commitment. This compresses the committed balancing
capacity, which in turn increases the level of the slow adder.

VI. CONCLUSION

We develop a detailed unit commitment and economic
dispatch simulation model of the Belgian power system in
order to analyze the effect of different design choices for
Operating Reserve Demand Curves on the cost of system
operation and the price of aFRR and mFRR capacity. Our
simulator attempts to emulate a best-case, fully coordinated
operation of the system from the day ahead to real time. We
propose four modules that are interleaved and implemented as
a rolling horizon optimization.

The precision of our model allows us to account for the
tension between incurring fixed costs for committing flexible
resources that can allow the system to operate reliably in real
time, versus running the risk of shedding load.
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(a) (b)
Fig. 3. (a) Yearly distribution and (b) cumulative distribution of the mean fast reserve adder per day [e/MWh] for 2018.

TABLE IV
FAST AND SLOW RESERVE ADDER IN e/MWH AS A FUNCTION OF ρ, THE
AVAILABILITY OF THE SLOW BALANCING CAPACITY FOR COVERING THE

DEMAND OF THE 7.5-MINUTE ORDC.

Fast reserve adder Slow reserve adder

ρ 0% 28% 50% 0% 28% 50%

8300

Pre-
Acti.

Ind. 14.65 5.78 1.57 0.12 0.25 0.33

Corr. 12.88 2.86 0.81 0.19 0.36 0.54

Post-
Act.

Ind. 14.62 5.78 1.51 0.08 0.14 0.29

Corr. 13.33 2.74 0.74 0.14 0.30 0.48

13500

Pre-
Act.

Ind. 14.76 6.50 1.66 0.25 0.37 0.32

Corr. 12.92 3.28 0.90 0.27 0.56 0.62

Post-
Act.

Ind. 14.91 6.20 1.55 0.09 0.21 0.25

Corr. 13.12 2.92 0.92 0.17 0.32 0.62

We validate our model against historically observed data of
the Belgian market for 2018. We then perform a case study
on the impact of ORDCs on scarcity prices and system costs
for 2018. We also perform a sensitivity analysis on the extent
to which mFRR reserves are assumed to contribute towards
satisfying the demand for 7.5-minute reserves.

The main findings of our analysis can be summarized as
follows:

1) The total flexible operating cost for a day is stable, regard-
less of the chosen ORDC variant. It is also stable for the
specific generation pool of Belgium that is investigated
in our work.

2) The fast adder varies from 2.8 e/MWh to 6.5 e/MWh in
the reference scenario. The main driver of the price is the
assumption related to the distribution of the 7.5-minute
imbalance increments, followed by the value of lost load.

3) The level of the fast adder is sensitive to assumptions
about what resources can contribute towards covering
the demand of the 7.5-minute ORDC. Note that this
sensitivity was already reported in [15].

In future work, we are interested in developing a Monte
Carlo simulation model for the Belgian system which draws
samples of system uncertainty, instead of relying on historical

data. This would allow us to enhance the statistical reliability
of our results, by exposing the system to multiple years of
hypothetical operation.
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